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ABSTRACT

Context. Classical novae are expected to emit gamma rays during their explosions. The most important contribution to the early
gamma-ray emission comes from the annihilation with electrons of the positrons generated by the decay of 13N and 18F. The photons
are expected to be down-scattered to a few tens of keV, and the emission is predicted to occur some days before the visual discovery
and to last ∼2 days. Despite a number of attempts, no positive detections of such emission have been made, due to lack of sensitivity
and of sky coverage.
Aims. Because of its huge field of view, good sensitivity, and well-adapted (14−200 keV) energy band, Swift/BAT offers a new
opportunity for such searches. BAT data can be retrospectively used to search for prompt gamma-ray emission from the direction of
novae after their optical discovery.
Methods. We have estimated the expected success rate for the detection with BAT of gamma rays from classical novae using a
Monte Carlo approach. Searches were performed for emission from novae occurring since the launch of Swift.
Results. Using the actual observing programme during the first 2.3 years of BAT operations as an example, and sensitivity achieved,
we estimate the expected rate of detection of classical novae with BAT as ∼0.2−0.5 yr−1, implying that several should be seen within a
10 yr mission. The search for emission in the directions of the 24 classical novae discovered since the Swift launch yielded no positive
results, but none of these was known to be close enough for this to be a surprise. Detections of a recurrent nova (RS Oph) and a nearby
dwarf nova (V455 And) demonstrate the efficacy of the technique.
Conclusions. The absence of detections is consistent with the expectations from the Monte Carlo simulations, but the long-term
prospects are encouraging given an anticipated Swift operating lifetime of ∼10 years.

Key words. gamma rays: observations – nuclear reactions, nucleosynthesis, abundances – stars: novae, cataclysmic variables –
stars: white dwarfs

1. Introduction

Classical novae are thought to be cataclysmic variables in which
a white dwarf (WD) accretes material from a companion star
until the conditions for hydrogen ignition are reached on its sur-
face and a thermonuclear runaway sets in, leading to an explo-
sion (Starrfield et al. 1978). As first noted by Clayton & Hoyle
(1974), novae are expected to emit gamma rays associated with
the decay of the radioactive isotopes produced during the explo-
sion. It is largely the decay of the short-lived β+-unstable nuclei,
such as 13N, 14,15O and 17,18F, that leads to a sudden release of
a great amount of energy, and the consequent envelope expan-
sion, huge luminosity increase and mass ejection. The positrons
emitted in the decay annihilate with electrons, producing a char-
acteristic 511 keV line. Comptonization of most of the 511 keV
photons also leads to a continuum down to a few tens of keV.
Among the short-lived isotopes, 13N and 18F (with lifetime τ =
862 s and 158 min respectively) are expected to be the most
important contributors to the prompt gamma-ray emission since
they decay when the envelope is starting to become transparent.

Later gamma-ray emission comes from the decay of medium-
and long-lived isotopes, such as 7Be (lifetime τ = 77 days), 22Na
(τ = 3.75 yrs), and 26Al (τ = 106 yrs). Photons are emitted by
these nuclei with characteristic energies of 478 keV for 7Be,
1275 keV for 22Na and 1809 keV for 26Al. Because of their
longer decay times, the decay rates of these isotopes is much
lower than that of 13N or 18F and they are not considered here.

The gamma-ray emission depends critically on the nature
and characteristics of the thermonuclear explosion, so its obser-
vation would provide a sensitive test of our theories of classical
novae. However, to date no detection has been possible. Because
novae are unpredictable, detecting prompt gamma rays from no-
vae requires a wide field of view (FOV) telescope that can con-
tinuously monitor the sky with good sensitivity over the ap-
propriate energy range. Unsuccessful attempts have been made
using BATSE on board CGRO (Hernanz et al. 2000), TGRS on
board WIND (Harris et al. 1999, 2000), and RHESSI (Smith
2004). Hernanz & José (2004) presented prospects for the de-
tectability of the electron-positron annihilation continuum with
IBIS/ISGRI telescope on board INTEGRAL. Despite the good
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sensitivity of the instrument, they found that a detection is ex-
pected only if a nova closer than 4−5 kpc lies by chance in the
IBIS FOV within about 10 h of the outburst temperature peak.
The relatively small FOV (29◦ × 29◦) of the IBIS telescope
makes the probability of this very low and indeed, it has not
occurred during the five years since the launch of INTEGRAL.

The Burst Alert Telescope (BAT) on board the Swift satel-
lite (Gehrels et al. 2004) offers a new opportunity to search for
the prompt gamma rays from novae. The BAT satisfies all the
requirements described above: it has a FOV of ∼2 sr (about an
order of magnitude larger than that of IBIS) and covers ∼50% of
the sky each day. It has a sensitivity similar to that of IBIS/ISGRI
and works in an energy range (14−200 keV) that is well matched
to that of the expected nova emission.

In this paper we investigate the detectability of the prompt
gamma-ray emission from classical novae with the BAT. We first
discuss the expected fluxes in the BAT energy range based on
the latest available nova models for the production of 13N and
18F (Sect. 2). A description of the BAT performance and of the
approach we adopted to search for prompt gamma rays from no-
vae is given in Sect. 3. In Sect. 4 we use a Monte Carlo approach
to investigate the probability of detecting the expected emission
based on modelling the distribution of novae in the Galaxy and
on the characteristics of the Swift observing sequence. Results
of a retrospective search in the BAT data archive for gamma rays
from 24 novae discovered during the first 3 years of Swift oper-
ations are presented in Sect. 5.

2. The expected prompt gamma-ray emission
from novae

The gamma-ray flux expected during the explosion of a typi-
cal classical nova depends on the amount of the isotopes 13N
and 18F produced, and on the probability that the gamma rays
resulting from their decay can escape. This flux has been com-
puted with a suite of two numerical codes: the hydrodynami-
cal code developed to simulate a nova explosion and its nucle-
osynthesis, from the accretion up to the explosion stages (José
& Hernanz 1998), and the Monte Carlo code dealing with the
production and transfer of gamma rays in the expanding nova
envelope (Gómez-Gomar et al. 1998). The results depend on the
mass of the WD and its chemical composition (CO or ONe), the
initial luminosity, the degree of mixing between the WD core
and the accreted envelope and the mass accretion rate; typical
masses adopted in the simulations are 1.25 M� for ONe-type
and 1.15 M� for CO-type novae, with degrees of mixing of
50%, accretion rate 2 × 10−10 M� yr−1 and Lin = 1 × 10−2 L�
(see Hernanz et al. 2002). The results also depend critically on
nuclear cross-sections, some of which are poorly known (see
Hernanz & José 2006). Important reductions in the 18F yields
with respect to models used in Gómez-Gomar et al. (1998) have
been reported in Hernanz et al. (1999) and Coc et al. (2000);
the nova models from these papers have been used here, and
the expected reduction in the gamma-ray flux due to the new
18F yields obtained with the recent Chafa et al. (2005) cross sec-
tions has been applied as a correcting factor in the second peak
of the light curves (see below). The successive reductions in the
18F yield along the past 10 years is as follows, if we adopt the
yields with the rates of Chafa et al. (2005) as a reference: a re-
duction by a factor of ∼8 with respect to Coc et al. (2000), a
factor of ∼50 with respect to Hernanz et al. (1999), and a factor
of ∼500 with respect to Gómez-Gomar et al. (1998).

The situation concerning the more recent determinations of
nuclear cross-section affecting 18F synthesis is not completely
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Fig. 1. Lightcurves in four energy bands for a 1.25 M� ONe-type nova
(left) and for a 1.15 M� CO-type nova (right) based on the most recent
available nova models and for a distance of 1 kpc.

settled yet, but at least the uncertainties are becoming much
smaller.

To assess the detectability with BAT of prompt gamma-ray
emission from novae, we ran the two codes mentioned for the
above conditions of mass and other parameters corresponding to
a CO and an ONe nova. The resulting predicted lightcurves in
four energy bands are shown in Fig. 1. The strongest peak is due
to the decay of 13N and reaches a maximum at t ∼ 1 h, the flux at
earlier times being reduced by the envelope opacity. The second
peak at t ∼ 6 h is from the decay of 18F. Depending on the nova
speed class (Gómez-Gomar et al. 1998), the peak gamma-ray
emission is expected to occur some days before the visual max-
imum and hence probably before the discovery. Thus it is most
likely to be detected if retrospective searches are made in the
data from an instrument with good sky coverage. The 18F emis-
sion is longer lasting and so, with an instrument making many
different pointings, is easier to detect, provided the sensitivity
is good enough. However the 13N peak is stronger and so de-
tectable at greater distance.

3. The Swift/BAT instrument

As discussed in Sect. 1, the BAT (Barthelmy et al. 2005) on
board Swift is well adapted to search for prompt gamma rays
from novae. It is a coded-mask telescope operating in the
15−150 keV energy range. The BAT detector plane is composed
of 32 768 pieces of CdZnTe (CZT), covering a 1.2 × 0.6 m sen-
sitive area. A 2.7 m2 D-shaped coded mask, with ∼54 000 lead
tiles arranged in a random, 50% open pattern, is mounted 1 m
above the detector plane. The instrument FOV covers ∼1/6 of
the sky in a single pointing. Within the field of view the sensitiv-
ity depends on the “coding fraction” which varies from 1 (“fully
coded”) in the central 0.5 sr of the field, to 0 at its limits. The
FOV with a coded fraction greater than 0.1 is about 2.2 sr (1.5 sr
with coding >0.5).

For exposures of duration Δt, the 5σ sensitivity (ph/cm2/s)
for a point source at a coded fraction of nc.f. is given by

S (E) =
5 · √rB(E)

(Adet/2) · η(E) · fm ·
√

nc.f. · Δt
(1)

where rB(E) and η(E) are the background count rate in the whole
detector and the detector efficiency in the energy band under con-
sideration. Adet is the detector plane area and fm (equal to 0.73
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Table 1. Models of the nova spatial distribution in the Galaxy used for the Monte Carlo simulations (Jean et al. 2000).

Model 1 (Kent et al. 1991):
ρh = 3.0 kpc and zh = 0.170 kpc. K0 is the modified Bessel function

Disc n(z, ρ) = nd exp
(
− |z|zh
− ρ

ρh

)

Bulge n(R) = ns1.04 × 106
(

R
0.482

)−1.85

R ≤ 0.938 kpc

= ns3.53K0

(
R

0.667

)
R ≥ 0.938

= 0 R ≥ 5 kpc
Model 2 (King et al. 1990):
ρh = 5.0 kpc and zh = 0.30 kpc

Disc n(z, ρ) = nd exp
(
− |z|zh
− ρ

ρh

)

Bulge n(R) = ns1.25
(

R
Rg

)−6/8

exp
[
− 10.093

(
R

Rg

)1/4
+ 10.093

]
R ≤ Rg

= ns

(
R

Rg

)−7/8
⎡⎢⎢⎢⎢⎢⎢⎢⎣1 − 0.0867(

R
Rg

)1/4
⎤⎥⎥⎥⎥⎥⎥⎥⎦ exp

[
− 10.093

(
R

Rg

)1/4
+ 10.093

]
R ≥ Rg

Model 3 (Dawson & Johnson 1994):
ρh = 5.0 kpc and zh = 0.35 kpc

Disc n(z, ρ) = nd exp
(
− |z|zh
− ρ

ρh

)

Bulge n(R) =
ns

R3+0.343
R ≤ 3 kpc

= 0 R ≥ 3 kpc

R is the distance from the Galactic Centre, z is the distance perpendicular to the Galactic plane and ρ is the galactocentric planar distance. The
distance from the Galactic Centre to the Sun is Rg = 8 kpc, ns and nd are the normalisation factors for the bulge and the disc respectively (in kpc−3).
The proportions of novae in the bulge are 0.179 (Model 1), 0.105 (Model 2) and 0.111 (Model 3).

for BAT) is a factor which takes into account the size of the de-
tector pixels relative to the mask elements (Skinner 2008).

The Swift observing strategy has important implications for
the search for prompt emission from novae. As the Swift satel-
lite is specifically designed to catch and study gamma-ray bursts
(GRBs), the BAT field is generally directed away from the earth.
Several different pointings are made in each spacecraft orbit
(96 min). The directions are chosen such that its companion
narrow-field instrument, the XRT (X-ray Telescope), can ob-
serve particular objects or follow-up GRB afterglows. As the
XRT targets are well distributed over the sky, the BAT is able
to collect “survey mode” data from a large fraction of the sky
every day. In survey mode, while awaiting GRBs, data are ac-
cumulated on board in arrays, called Detector Plane Histograms
(DPHs), that are periodically sent to the ground. A DPH contains
a 80-channel spectrum for each of the 32 768 pixels of the detec-
tor plane. Such histograms are integrated over 450 s, or some-
times less if the integration is terminated for operational reasons
such as the start of a spacecraft slew or the approach to the South
Atlantic Anomaly. On board software searches BAT event rates
and images for increases corresponding to GRBs, working over
a range of time scales (see Gehrels et al. 2004; Fenimore et al.
2003). The prompt gamma-ray emission from a nova could in
principle trigger the GRB detection system and lead to a space-
craft repointing, but it would probably be too faint and long-
lasting to be detected in this way. However, once it is known that
a nova has occurred at a particular location, a more sensitive ret-
rospective search is possible. Thus the survey mode DPH data
provides a valuable resource for nova emission searches.

A particular direction on the sky is typically within the field
of view many times per day, sometimes in an irregular pattern,
sometimes with consecutive observations spaced by the 96 min
orbital period. This sampling pattern is particularly relevant for

the detection of novae because their peak flux could be missed
during the gaps.

4. Prospects for detection
4.1. Monte Carlo simulations

Whether or not prompt gamma-ray emission from a particular
nova can be detected with BAT depends in a complex way on
the distance and gamma-ray luminosity of the nova and how the
gamma-ray light curve is sampled by the sequence of pointings
for which it lies within the field of view. To estimate the proba-
ble rate of detection of novae with BAT, we generated a sample
of imaginary novae with a Monte Carlo simulation, that were
checked against a typical observing sequence. For the observing
programme we used the actual BAT pointings made during the
first 2.3 years of operation.

4.1.1. Nova distribution models

Novae were simulated based on each of three different models of
spatial distribution in the Galaxy. The models were those used
by Jean et al. (2000), excluding their oldest population model.
Details of the three adopted models are summarised in Table 1.
Each has a different distribution between the novae in the bulge
and those in the disk.

4.1.2. The rate of novae

The rate of occurrence of classical novae in the Galaxy has been
variously estimated as 35 ± 11 yr−1 (Shafter 1997), 41 ± 20 yr−1

(Hatano et al. 1997) and 34+15
−12 yr−1 (Darnley et al. 2006).

However, to be the subject of a retrospective search in
BAT data, a nova has first to be discovered in the optical do-
main. Thus the relevant rate is strictly the frequency of reported
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Fig. 2. Histogram of the novae discovered in 5 years intervals from
1901−2005 (left) and per year from 1995−2005 (right).

classical novae. Interestingly, the discovery of a classical nova
depends mainly on the work of amateurs astronomers. A very
useful catalogue is available on the web, containing all novae
discovered up to February 1, 2006 (see Downes et al. 2001, and
the web-site http://archive.stsci.edu/prepds/cvcat/
index.html). From that, we selected all those objects classified
as classical novae. The number discovered in 5 year intervals
over the last century is shown in the left panel of Fig. 2.

The general rising trend in the number of novae discovered
per year is certainly related to the steadily increasing activities
of amateurs. The righthand panel of Fig. 2 shows the number
discovered during each of the last ten years. The rate has recently
risen to (∼10 yr−1), but is still far from the predicted Galactic
nova rate. This is mainly due to interstellar extinction, though at
any one time a part of the sky is too close to the sun for a nova
to be observed.

4.1.3. White dwarf composition

According to the calculations described in Sect. 2, at very early
times CO novae release more gamma rays related to 13N decay
than ONe ones, so for the simulations we make an assumption
about the relative numbers of ONe and CO novae. We note how-
ever that this difference is probably not a general trend, since it is
strongly related to the efficiency of convection in the outer nova
layers, and thus a range of fluxes between those presented here
is expected, making the results less dependent on the assumption
made.

The classification of a nova as type ONe or CO relies on
spectroscopic observations and is not always available. Livio &
Truran (1994) estimated that ONe novae represent between 11%
and 33% of galactic novae. The results presented here are based
on a mix of 25% ONe and 75% CO novae, both in the disc and
in the bulge, but results are also given for ONe and for CO novae
separately.

We note that the expected gamma-ray flux from a nova de-
pends mainly on the WD mass (see Hernanz et al. 2002) and
the fluxes shown in Fig. 1 were calculated assuming single, typ-
ical, WD masses for ONe and for CO novae. In this respect, the
approach adopted here is a somewhat simplified one.

4.2. Monte Carlo results

For each distribution model, the positions in the Galaxy and the
time of explosion of 350 000 imaginary novae were generated,

Fig. 3. Distribution of the distances from the Sun of the simulated no-
vae. Black, red and green histograms correspond to novae distributed
according to models 1−3 respectively (see Table 1).

finding for each one a distance from the Sun and the sky coor-
dinates. All of the explosion times chosen were during the first
2.3 years of BAT observations, for which we know the actual
observing sequence and observing efficiency. Each nova was al-
located to a class (ONe or CO). The distributions of the distances
from the Sun of the simulated novae is shown in Fig. 3 for each
of the three models.

We then assessed whether BAT would have seen the gamma
rays from the novae. If and when during the 48 h following the
nova it would have been within the BAT field of view, the sen-
sitivity for a source at the corresponding position in the FOV
was calculated using Eq. (1). A nova was assumed to have been
detected if the expected flux from Fig. 1, integrated over the ob-
servation time and scaled to the distance of the simulated nova,
exceeded the 5σ sensitivity.

Figure 4 shows the distribution of the distances of the
detectable novae according to the Monte Carlo simulation.
Although close novae are more easily detected, more distant
ones are more numerous, leading to a peak at ∼2−3 kpc, al-
though detection of novae at distances up to ∼5 kpc is possible
in favourable circumstances.

These results allow one to calculate the probability that, if a
nova explodes somewhere in the Galaxy, the gamma rays would
be detectable with the BAT. This can be multiplied by an appro-
priate nova rate (Sect. 4.1.2) to give the expected detection rate.

The results for model 1 of Table 1 are given in Table 2. We
have not given explicitly the results for the other two models
because they are essentially identical. In calculating the detec-
tion probability, it is considered that a nova would be detected if
it would have been seen at a significance level greater than 5σ
using any of the following integration timescales: single DPH
(∼13 min), 1 h, 3 h, 6 h, 12 h and 24 h. Usually it is the sin-
gle DPH or 1 h timescales that prove most sensitive.

Table 2 shows that the 50−100 keV band is the most promis-
ing one and that the probability of detection of a particular nova
is only about 1.5%. Nevertheless, with a nova rate of 35 yr−1

and a hoped-for mission life of 10 yr, this implies an expec-
tation number of 5.2 detected novae. However, as discussed in
Sect. 4.1.2, a nova must be discovered optically in order to per-
form the retrospective search for gamma-ray emission. At first
sight this would imply that an effective rate of ∼10 yr−1 should
be multiplied by 1.5%, suggesting only 1.5 over a 10 yr Swift
mission.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809863&pdf_id=2
http://archive.stsci.edu/prepds/cvcat/index.html
http://archive.stsci.edu/prepds/cvcat/index.html
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F. Senziani et al.: Detectability of gamma rays from novae with Swift/BAT 227

Fig. 4. Distribution of the distances from us of the novae detected in
gamma rays in the Monte Carlo simulation. Model 1 was assumed.

Table 2. The probability that a novae is detectable with BAT, for each
of four energy bins. Results are for the spatial distribution of model 1
in Table 1. Other distribution models give very similar results (see text
for details).

Nova type Detection probabilities
proportions 14−25 keV 25−50 keV 50−100 keV 100−200 keV

100% ONe 0 0.02 % 0.12% 0.10%
100% CO 0.007% 0.82% 1.95% 1.59%

25% ONe + 75% CO 0.004% 0.63% 1.55% 1.25%

However the novae that are discovered optically are prefer-
entially those that are close, both because they are brighter and
because interstellar absorption tends to be less. We have exam-
ined the distribution in mV of the discovered novae in Downes
et al. (2001) catalog, considering novae discovered between
1985 and 2005. This can be compared with the corresponding
distribution that would be expected based on our simulated nova
population, taking the absolute visual magnitude of a typical
nova as −8 and allowing for galactic extinction based on Hakkila
et al. (1997). We conclude that although the above rates imply
that only about 1 nova in 3−4 is observed, the probability of op-
tical discovery of a nova of apparent magnitude mV < 9 is about
50%, roughly independent of magnitude. For mV > 9 it decreases
rapidly and is essentially zero for mV > 14. We used such a prob-
ability distribution to weight the distribution in magnitude of the
novae detected with BAT among those of our simulated popula-
tion. Both the weighted and the unweighted distributions of the
novae detected with BAT are plotted in Fig. 5.

We conclude that based on the assumptions made here
2−5 novae should be detectable in gamma rays during a 10 yr
mission.

5. Observational results

5.1. Classical novae since the launch of Swift

The classical novae discovered during the first ∼3 years after
the Swift launch are listed in Table 3. Of these, 7 novae have
been identified as CO type. Distance measures are available in
the literature for only 5 of the novae. Where sufficient data are
available we have attempted to make our own distance estimates
using the peak magnitude, mV , the time to decay by 2 mag, t2, the
reddening E(B − V) and the MMRD relationship of Della Valle
& Livio (1995). These are given in Table 4. mV , and t2, were

Fig. 5. Distribution of the magnitude of the novae detected in
gamma rays in the Monte Carlo simulation (solid line). The dashed line
represents the same distribution weighted for the probability of optical
discovery of a nova (see text for details).

estimated from AAVSO lightcurves (see http://www.aavso.
org/). E(B − V) values were taken from IAU Circulars when
available, otherwise the extinction map of Hakkila et al. (1997)
was used (see Table 4). The derived distances must be treated
with some caution because of the large uncertainty in the values
used and in the MMRD relationship adopted.

5.2. Analysis

For each nova, we selected all the BAT observations having the
position of the nova in the FOV from 20 days before to 20 days
after the nova discovery. The relatively long time interval takes
into account the uncertainty in the time difference between the
expected prompt gamma-ray emission and the nova discovery
(see Sect. 2) and also provides a baseline for comparison.

The DPH files (see Sect. 3 for details) for the selected
datasets were analysed with a procedure combining public tools1

and a special purpose fitting programme. The data were filtered
to exclude periods of high background rates, source occultation,
etc. Typically, a DPH file contains information for several con-
secutive pointings, each lasting 450 s or less, with an average
total exposure time of ∼13 min. As the peak flux is expected to
occur on a timescale of ∼1 h (see Fig. 1), all of the pointings
within a single DPH were combined.

The data were analysed in four energy bands, 14−25, 25−50,
50−100, and 100−200 keV, using a procedure that fits simulta-
neously a series of background models, the intensities of known
strong sources and that of a source at the position of the nova.

For each nova and energy bin, the flux estimates were used
to form a lightcurve. All the fluxes measured with a signal to
noise ratio (SNR) greater than 4 in one energy band or hav-
ing SNR greater than 2.5 in at least two energy bands were se-
lected for further analysis. For each DPH in which such high
points were found, an image of the FOV was generated using
the batfftimage public tool and searched (with batcelldetect) for
the evidence of the nova, setting a threshold of 5σ level. The re-
quirement for detection of a signal in both the lightcurve and the
image improves the robustness of any detection.

1 Version 2.5 of the Swift software (see http://swift.gsfc.nasa.
gov/docs/software/lheasoft) was used.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809863&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809863&pdf_id=5
http://www.aavso.org/
http://www.aavso.org/
http://swift.gsfc.nasa.gov/docs/software/lheasoft
http://swift.gsfc.nasa.gov/docs/software/lheasoft
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Table 3. The 24 classical novae examined in the search for the prompt gamma-ray emission.

Nova RA Dec Date of discovery Last prediscovery Nova type Distance from References*
(deg) (deg) (UTC) (UTC) literature (kpc)

V2361 Cyg 302.329 39.814 2005 Feb. 10.850 2005 Feb. 6 CO, FeII 1, 2, 3, 4, 5, 6, 7
V382 Nor 244.936 –51.581 2005 Mar. 13.309 ? FeII 8, 9
V378 Ser 267.3523 –12.999 2005 Mar. 18.345 ? CO, FeII 10, 11, 12, 13, 6
V5115 Sgr 274.246 –25.944 2005 Mar. 28.779 2005 Mar. 27.464 14, 15
V1663 Aql 286.302 5.236 2005 Jun. 9.240 ? FeII 2.9 ± 0.4 Boyd & Poyner (2006)

5.5 ± 1 Lane et al. (2006)
7.3–11.3 Poggiani (2006)

16, 17, 18
V5116 Sgr 274.461 –30.442 2005 Jul. 4.049 2005 Jun. 12 19, 20, 21, 22
V1188 Sco 266.089 –34.276 2005 Jul. 25.284 2005 Jul. 20 FeII(?) 23,24,25,26
V1047 Cen 200.207 –62.630 2005 Sep. 1.031 2005 Aug. 12.050 22
V476 Sct 278.020 –6.726 2005 Sep. 28.088 2005 Sep. 24.629 FeII 4 ± 1 Munari et al. (2006a)

27, 28, 29
V477 Sct 279.678 –12.271 2005 Oct. 11.026 2005 Oct. 7.055 He/N 11 ± 3.6 Munari et al. (2006b)

30, 31
V2575 Oph 263.304 –24.351 2006 Feb. 8.379 1991 Aug. 11 CO, FeII 32, 33, 34, 35
V5117 Sgr 269.719 –36.793 2006 Feb. 17.370 2006 Feb. 5.36 FeII 36, 37
V2362 Cyg 317.885 44.801 2006 Apr. 2.807 2006 Mar. 28 CO, FeII ∼1.5 Czart et al. (2006)

5–12 Steeghs et al. (2006)
38, 39, 40, 34, 41, 42, 43

V2576 Oph 258.887 –29.161 2006 Apr. 6.565 ? CO, FeII 44, 34, 45
V1065 Cen 175.793 –58.067 2007 Jan. 23.354 2007 Jan. 15.36 46, 47
V1280 Sco 254.420 –32.343 2007 Feb. 4.854 2007 Feb. 2.866 FeII Swank (2007)

Osborne et al. (2007)
48, 49, 50, 61

V1281 Sco 254.247 –35.363 2007 Feb. 19.859 2007 Feb. 14.8575 51, 52, 62
V2467 Cyg 307.052 41.810 2007 Mar. 15.787 2007 Mar. 12.796 FeII 1.5–4 Steeghs et al. (2007)

53, 63, 64, 65
V2615 Oph 265.683 –23.676 2007 Mar. 19.812 2007 Mar. 17.82 CO, FeII 54, 62
V5558 Sgr 272.577 –18.781 2007 Apr. 14.777 2007 Apr. 9.8 FeII 55, 56, 66, 67
V598 Pup 106.428 –38.245 2007 Jun. 5.968 2007 Jun. 2.978 CO Read et al. (2007a)

Torres et al. (2007)
Read et al. (2007b)
76, 77, 78

V390 Nor 248.048 –45.154 2007 Jun. 15.086 2007 May 20.1 FeII 57, 68
V458 Vul 298.601 20.880 2007 Aug. 10.01 2007 Aug. 4 69, 70, 58, 71, 72, 73
V597 Pup 124.075 –34.257 2007 Nov. 14.23 2007 Nov. 11.22 FeII 59, 60, 74, 75

* For each nova references to the first few IAU Circulars are given: (1) #8483; (2) #8484; (3) #8487; (4) #8511; (5) #8524; (6) #8529; (7) #8641;
(8) #8497; (9) #8498; (10) #8505; (11) #8506; (12) #8509; (13) #8527; (14) #8502; (15) #8523; (16) #8540; (17) #8544; (18) #8640; (19) #8559;
(20) #8561; (21) #8579; (22) #8596; (23) #8574; (24) #8575; (25) #8576; (26) #8581; (27) #8607; (28) #8612; (29) #8638; (30) #8644; (31) #8617;
(32) #8671; (33) #8676; (34) #8710; (35) #8728; (36) #8673; (37) #8706; (38) #8697; (39) #8698; (40) #8702; (41) #8731; (42) #8785; (43) #8788;
(44) #8700; (45) #8730; (46) #8800; (47) #8801; (48) #8803; (49) #8807; (50) #8809; (51) #8810; (52) #8812; (53) #8821; (54) #8824; (55) #8832;
(56) #8854; (57) #8850; (58) #8863; (59) #8895; (60) #8896; (61) #8845; (62) #8846; (63) #8848; (64) #8888; (65) #8905; (66) #8874; (67) #8884;
(68) #8851; (69) #8861; (70) #8862; (71) #8878; (72) #8883; (73) #8904; (74) #8902; (75) #8911; (76) #8898; (77) #8899; (78) #8901.

If no such double detection was found, the procedure was re-
peated on lightcurves rebinned with different timebins (1 h, 3 h,
6 h, 12 h, 24 h). To obtain images on the longer timescales and
with different spacecraft attitudes, a special purpose programme
was used to mosaic those from individual DPHs.

5.3. Results of the search

No evidence was found for prompt gamma-ray emission from
any of the 24 classical novae listed in Table 3. No points satisfied
both the above trigger conditions (lightcurve plus image detec-
tion). The distribution of the complete ensemble of SNR mea-
surements (∼750 000 points, including all the single DPH light
curves and all the energy bands) agrees very well with a ran-
dom distribution with an average value of zero. The same is true
for the rebinned light curves. We therefore conclude that in each
case either the expected gamma-ray emission from the novae

occurred when the object was not in the BAT FOV or the dis-
tance was too large for the predicted emission to be detected or
the gamma-ray luminosity of the nova is weaker than expected.

To quantify the limiting distance below which a particular
nova could be detected by BAT assuming the fluxes presented in
Sect. 2, we first estimated a limiting flux for each point of the
lightcurves for each nova. Lightcurves at different energies and
timescales were considered separately in order to identify which
combination of energy bin and timescale was most constraining.

Not only is the BAT coverage not continuous, but it also
varies both in effective exposure and in the observing sequence
from a source to another. As pointed out above, the peak of the
expected gamma-ray flux of a nova could be missed during a
coverage gap. Because the exact time of the peak is unknown, it
is only possible to give a probability that emission at a particular
level would have been detected, assuming that the peak occurred
at a random, unknown, time. What can be done is to say that for
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Fig. 6. Average expected flux as a function of
integration time for the nova V2362 Cyg. Red
and green bars are supposing a CO type and a
ONe type nova respectively. Upper limits from
BAT are indicated by arrows, for percentage
coverage of possible onset times P = 10%
(black) and P = 50% (blue). The purple curve
represents the ideal 5σ BAT sensitivity if the
source were observed continuously in the fully
coded FOV. As expected, for long integrations
the sensitivity is better, but the average flux
lower.

a certain percentage, P, of possible onset times, then the sensi-
tivity and the coverage are such that the nova would have been
detected had it been emitting at the level discussed in Sect. 2 and
had it been closer than a distance d. Where a distance estimate
is available it can then be compared with d. The calculation was
done for P = 10% and for P = 50%.

We illustrate this process in the case of nova V2362 Cyg
in Fig. 6. BAT upper limits are indicated with an arrow. Black
symbols show the limits which can be placed on the flux for a
percentage P = 10% of the time, blue ones those for P = 50%.
The red lines (CO type) and green lines (ONe type) show the
expected flux for a CO nova at the minimum (1.5 kpc) and max-
imum (12 kpc) of the various published distance estimates (see
Table 3). For each binsize, these fluxes were obtained by aver-
aging the appropriate curve in Fig. 1 from the beginning of the
outburst up to a time equal to the binsize. The purple curves
represent the best possible 5σ BAT sensitivity, calculated from
Eq. (1) using a typical value of rB(E), if the source were seen
continously in the fully coded FOV.

It can be seen that under ideal conditions the nova should
have been detectable in the higher energy bands if its distance
was toward the lower end of the range of estimates. However the
actual upper limits are about an order of magnitude higher than
the ideal ones because the nova was in the BAT FOV only for a
fraction of the time and then in regions towards the edge having
reduced sensitivity. Thus the non-detection is not surprising.

Table 4 gives, for each of the 24 novae examined, the best
constraining timescale (Δtbest), the measured 5σ upper limits on
the flux, and an estimate of the maximum distance out to which
a CO nova should have been detectable (dmax). The limits are for
the 50−100 keV band, which was the best constraining one in
each case. When the nova type is unknown, the limiting distance
for a ONe nova is indicated into parentheses. The limits and dis-
tances are given for two cases – those that can be placed for at
least 10% or for at least 50% of the possible times of explo-
sion. In no case was the non-detections surprising, though for
several a detection might have been marginally possible in the
most favourable conditions – if the distance was at the lower end

of the range of estimates and the time of explosion were luckily
placed with respect to the observations.

5.4. Recurrent and dwarf novae

In parallel with the searches for gamma-ray emission from clas-
sical novae, the same technique was applied to certain other ob-
jects. This lead to the detection of hard X-ray emission from both
the recurrent nova RS Oph (reported in Bode et al. 2006) and
the dwarf nova V455 And (Senziani et al. 2008). The strength
and timescale of the high energy outburst from each of these ob-
jects were such that neither was detected on-board or by the rou-
tine monitoring on the ground (though more sophisticated anal-
ysis ground analysis now being developed might have done so).
However a directed search, knowing the exact location and the
approximate time of the event, allowed convincing detections.

In each case the strongest emission was below 25 keV with
little or no flux at higher energies. This is the inverse of the situ-
ation expected for classical novae and the physical processes in-
volved are clearly different. In the case of RS Oph the emission
was due to the shock of the ejecta with the surrounding medium,
whereas the emission seen from V455 And was probably due
to an instability in the accretion disc. However these detections
demonstrate the potential of retrospective searches such as those
described here.

6. Discussion

In Sect. 4.2 it was concluded that the BAT should be capable
of detecting the gamma-ray emission due to nucleosynthesis in
2−5 novae during a 10 yr life. This estimate depends on a num-
ber of assumptions. The most basic of these is the predicted
gamma-ray flux during nova explosions, which mainly depends
on the expected nucleosynthesis and the hydrodynamics of the
expanding envelope. Indeed the possibility of confirming our
current understanding of nucleosynthesis and dynamical evolu-
tion taking place in nova explosions is one of the incentives of
this work.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809863&pdf_id=6
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Table 4. Summary of the results obtained from BAT data for 24 Classical novae.

10% coverage time 50% coverage time
nova year mV t2 E(B − V) dMMRD Δtbest upper limit dmax Δtbest upper limit dmax

at visual max (days) (kpc) (ph cm2 s−1) (kpc) (ph cm2 s−1) (kpc)

V2361 Cyg 2005 10 5.5 ± 0.5 1.2 10.80+2.91
−2.30 DPH 5.9 × 10−3 3.8 DPH 1.5 × 10−2 2.3

V382 Nor 2005 9.7 14.5 ± 2.5 1.50–1.51 (*) 4.8+1.8
−1.2 DPH 2.1 × 10−2 1.8 (0.5) DPH 2.6 × 10−2 0.1 (0.1)

V378 Ser 2005 11.6 52 ± 18 0.74 18.88+7.71
−4.50 DPH 1.1 × 10−2 2.7 DPH 4.7 × 10−2 0.1

V5115 Sgr 2005 7.75 4 ± 2 0.53 10.22+3.08
−2.38 DPH 6.0 × 10−3 3.7 (0.9) DPH 2.4 × 10−2 0.2 (0.2)

V1663 Aql 2005 10.7 14 ± 6 2 3.88+1.83
−1.38 DPH 4.5 × 10−3 4.1 (1.0) 12 h 2.7 × 10−3 0.1 (0.2)

V5116 Sgr 2005 7.2 7 ± 4 0.34–0.57 (*) 8.3+5.1
−3.1 DPH 1.2 × 10−2 0.1 (0.1) DPH 1.2 × 10−2 0.1 (0.1)

V1188 Sco 2005 8.9 12 ± 5 1.09–1.49 (*) 4.4+4.8
−1.9 DPH 5.2 × 10−3 3.9 (1.0) DPH 5.6 × 10−2 0.6 (0.2)

V1047 Cen 2005 7.4 4.5 ± 1.5 1.28–1.38 (*) 2.8 ± 0.5 DPH 1.0 × 10−2 2.7 (0.7) DPH 2.6 × 10−1 0.2 (0.2)
V476 Sct 2005 11.4 12 ± 2 2.0 5.69+1.85

−1.43 1 h 2.4 × 10−2 1.8 (0.5) DPH 2.4 × 10−1 0.1 (0.1)
V477 Sct 2005 10.75 7.5 ± 2.5 1.3 12.74+4.04

−3.16 1 h 9.0 × 10−3 2.8 (0.7) 1 h 5.0 × 10−2 0.3 (0.2)
V2575 Oph 2006 11 31 ± 2 1.5 5.63+1.69

−1.28 DPH 7.8 × 10−3 3.2 DPH 4.1 × 10−2 1.2
V5117 Sgr 2006 9.9 59 ± 11 0.5 ± 0.15 11.91+0.63

−0.45 1 h 1.3 × 10−2 2.5 (0.6) 1 h 2.2 × 10−1 0.3 (0.2)
V2362 Cyg 2006 7.75 7 ± 2.5 0.59 8.90+2.81

−2.19 DPH 1.4 × 10−2 2.3 1 h 1.2 × 10−1 0.6
V2576 Oph 2006 9.2 25.5 ± 2.5 0.62 9.58+3.32

−2.37 DPH 8.9 × 10−3 3.0 DPH 4.6 × 10−2 1.3
V1065 Cen 2007 8.7 19.5 ± 1 0.77–0.84 (*) 7.55+1.65

−1.15 1 h 7.6 × 10−3 3.2 (0.8) 1 h 2.7 × 10−2 1.6 (0.4)
V1280 Sco 2007 4 13 ± 1 0.39–0.55 (*) 2.1±0.4 1 h 9.1 × 10−3 3.0 (0.8) DPH 2.7 × 10−2 1.6 (0.4)
V1281 Sco 2007 8.8 8 ± 4 0.7 12.10+4.28

−3.37 1 h 9.1 × 10−3 2.9 (0.7) DPH 3.2 × 10−2 1.7 (0.4)
V2467 Cyg 2007 7.6 8 ± 2 1.6±0.1 1.93+0.26

−0.24 1 h 9.3 × 10−3 2.9 (0.7) DPH 5.3 × 10−2 1.1 (0.3)
V2615 Oph 2007 8.75 36.5 ± 4.5 1.0–1.3 3.09+0.21

−0.15 1 h 2.3 × 10−2 1.9 DPH 9.3 × 10−2 0.9
V5558 Sgr 2007 6.5 6 ± 1 0.8 3.78+1.06

−0.83 1 h 2.8 × 10−2 1.7 (0.5) DPH 1.1 × 10−1 0.9 (0.2)
V598 Pup 2007 ? ? ? ? DPH 2.6 × 10−2 1.8 DPH 1.1 × 10−1 0.1
V390 Nor 2007 9.8 49.5 ± 5.5 1.0 5.74+1.67

−1.26 1 h 2.1 × 10−2 1.9 (0.5) 1 h 6.7 × 10−2 1.0 (0.3)
V458 Vul 2007 8.1 8.5 ± 3.5 0.6 10.01+3.45

−2.71 1 h 2.8 × 10−2 1.7 (0.4) DPH 1.1 × 10−1 0.4 (0.1)
V597 Pup 2007 ? ? 0.3 ? 1 h 2.2 × 10−2 1.8 (0.5) DPH 9.8 × 10−2 0.8 (0.2)

As explained in Sect. 2, the expected gamma-ray flux from a
nova depends critically on nuclear reactions rates which are still
uncertain. Some alternative assumptions could lead to reduced
expectations and better measurements of certain cross-sections
are needed. The WD mass is another important parameter to con-
sider. In this paper we obtained our predictions assuming that
all CO novae and ONe novae hosted a 1.15 M� or a 1.25 M�
WD respectively. In this scenario CO novae are more likely to
be detected, but different fluxes could be obtained for different
WD masses, as shown in Hernanz et al. (2002). WD masses, as
well as the proportion between CO and ONe novae in the Galaxy,
are very difficult to measure, and only rough estimations based
on scarce information are available.

The results presented in Sect. 4.1 are based on the spatial
distribution of novae in the Galaxy of model 1 of Table 1. It is
noteworthy that the conclusions do not strongly depend on the
model chosen; those obtained with models 2 and 3 are very sim-
ilar. This is because BAT could only detect novae within ∼5 kpc,
where the spatial distributions are similar (see Fig. 3).

The other factor that can strongly affect our results is the rate
of novae in the Galaxy, or more particularly the rate of discov-
ered novae. It is certain that some relatively nearby novae are
never observed, because they were too close to the sun, though
chance of cloud coverage, or (particularly in the southern hemi-
sphere) simply because no one was looking. The estimated dis-
covery probability of 50% for novae mV < 9 given in Sect. 4.2
is based on 20 yr of data. The rate of discovery and the methods
used are evolving quickly and it is difficult to extract statistics
on the distribution and characteristics of those currently being
found. Almost certainly the chance that a nova potentially de-
tectable with BAT will be reported is already higher.

The fact that no novae were detected in the first 3 yr of
BAT operations (Sect. 5) is consistent with the expectation of
2−5 nova in 10 years estimated in Sect. 4.2. None of the 24 no-
vae occurring during that time was sufficiently close and suf-
ficiently well covered that a detection was likely. The fact that
the technique was able to detect similar outbursts from RS Oph
and V455 And demonstrates its efficacy even though the emis-
sion had a different origin. The search is being continued and the
analysis presented here gives high hopes of eventual success.

An intriguing possibility is that a sufficiently nearby nova
might be detectable without depending on the later detection of
an optical nova. If it were found by the on-board software, rather
than later on the ground, it might even trigger a spacecraft slew
to bring the position within the field of view of the XRT and
UVOT instruments. Because the gamma rays are hardly affected
by interstellar dust, it could even lead to the discovery of a nova
that would otherwise be unobserved (IR observations would al-
low the confirmation of the nature of the event). The probability
of a nova so close is, of course relatively low, but the information
that could be obtained would be of enormous value.
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